
Version 5.0
Chapter 2
Processes and Threads
While the specifics of how multiprocess, multithreaded programs execute differ
greatly, all share some general characteristics. This chapter defines how TotalView
looks as processes and threads. It also describes the way in which you tell the CLI
to which processes and threads it should direct a command.

A Couple of Processes
When programmers write single-threaded, single process programs, they
can almost always answer the question �Do you know where your program
is?� These kind of programs are rather simple, looking something like this:

If you use a debugger, any debugger, on something like this, you can almost
always figure out what�s going on. Before the program begins executing, you
set a breakpoint, let the program run until it hits the breakpoint, then in-
spect variables to see what they�ve been set to. If you suspect there�s a logic
problem, you can step the program through its statements, seeing what
happens and where things go and where things are going wrong.

FIGURE 1: A Uniprocessor

A Computer

A Process
Command Line Interface Guide 15

2
Processes and Threads

A Couple of Processes
A typical computing environment is actually a more complicated than this
as the computer is actually existing a great number of programs. For exam-
ple, your computing environment could have daemons and other support
programs executing.

These additional processes simplify a programmer�s life because the appli-
cation program no longer had to do everything itself. It could hand some
things off to something else and they�d do the program�s bidding.

This figure assumes that the application program only sends requests to the
daemon. More complicated architectures are quite common. For example,
the following figure shows an E-mail program communicating with a dae-
mon on its computer. After receiving a request, this daemon sends stuff to
an E-mail daemon on another computer which then delivers the stuff.

This kind of processing assumes that the jobs being performed are discon-
nected. That is, no real cooperation exists between the processes. In all
cases, one program hands work off to another. After the handoff occurs,
there is no more interaction. While this is an extremely useful model, a more
general model is that programs can divide up their work, parcelling it out to

FIGURE 2: A Program and Daemons

FIGURE 3: Mail with Daemons

A Daemon or

A User Program

Support Program
16 Command Line Interface Guide Version 5.0

Processes and Threads

A Couple of Threads
other computers. When this occurs, one program relies on another program
to do some of its work. To gain any advantage, however, the work being sent
to the second computer has to be work that the first computer doesn�t need
right away. In this way, the two computers could act more or less indepen-
dently. And, because the first computer didn�t have to do the work that the
second computer did, the program could complete faster. (See Figure 4.)

Here�s one the problems: because programs have bugs, how does a pro-
grammer debug what�s happening on the second computer. A horrid solu-
tion is have a debugger running on each computer. A slightly better solution
is to create a program the same way as was done with one computer, get it
working, then split it up so it could use more than one computer. If done this
way, there�s a likelihood that any problems that occur will occur in the code
that splits up the problem.

The TotalView solution is even better. It places a server on each processor as
a program is launched. This server then communicates the �main� TotalView.
This gives you one central location from which you can manage and exam-
ine all aspects of your program.

A Couple of Threads
The support programs just discussed are owned by the computer (actually,
they�re owned by the operating system). They do all sorts of activities from
managing computer resources to providing services such as printing. If the
operating system can have all sorts of things doing work for it, why can�t a
program? We�ll call these new things threads. (See Figure 5.) This figure also

FIGURE 4: Two Computers Working on One Problem

Sends Work

Receives Work

Uses Work
Version 5.0 Command Line Interface Guide 17

2
Processes and Threads

Even More Complicated Programming Models
shows, for the last time, the daemon processes that are executing. From
now on, we�ll just assume that they�re are there.

In this computing model, a program (the main thread) creates threads and
these threads can also create threads if they need to. Each thread is a rela-
tively independent process.

The debugging problem here is similar to the problem of processes running
on different machines. In both cases, a debugger has to intervene with any-
thing that is executing.

In the examples used so far, each executing process is doing something dif-
ferent and, except for when you need one thread to wait for another, its real
difficult to tell what any thread is doing. And, the nature of these kinds of
programs really keeps you away from having one �thread of execution�; that
is, having only one thing running at a time.

Even More Complicated Programming Models
In the same way that software computing architectures become more com-
plicated, advances in hardware design allowed the placement of more than

FIGURE 5: Threads
18 Command Line Interface Guide Version 5.0

Processes and Threads

Even More Complicated Programming Models
one processor within a computer. So, expanding on the previous figure, you
could be writing programs that execute in environments like what is shown
in Figure 6.

This figure shows four linked processors on one board, each of which has
three threads. This architecture could, in one sense, be thought of as an ex-
tension to the model of having more than one separate computer. And, if
you think of your architecture like this, there�s no reason that you can�t join
lots of computers together to solve problems. (See Figure 7.)

This drawing shows five computers, and each has four processors. Every
program running on every processor has three threads, which means that al-
together there are 60 user threads.

This drawing is just depicts processors and threads. It doesn�t have any in-
formation about the nature of the programs and threads or even if the pro-
grams are the same or are different.

At any time, it is next to impossible to guess which threads are executing
and what a thread is actually executing. And worse, protocols such as
OpenMP are actually distributing and controlling the work being performed.

FIGURE 6: Four Processor Computer
Version 5.0 Command Line Interface Guide 19

2
Processes and Threads

More On Threads
In these kinds of environments, a program (or the program within a library) is
using another program to control how it distributes work across processors.

If everything goes right, things are real easy. When there�s problems�and
there are always problems�traditional debuggers and solutions are help-
less. As you�ll see, TotalView organizes this mass of executing procedures for
you and, because operating systems can complicate things greatly,
TotalView lets you correct problems in the ways operating systems misiden-
tify or fail to identify threads.

More On Threads
All threads aren�t the same. In Figure 8 (which is something like a figure
shown earlier), the squiggly lines are user threads.

The threads that are part of your program are �user threads�.

FIGURE 7: Four Processor Computer Networks
20 Command Line Interface Guide Version 5.0

Processes and Threads

More On Threads
NOTE Many computer architectures have something called �user mode�, �user
space�, or something similar. �User threads� means something else. Without trying to
be rigorous, a �user thread� is simply a process created by a program that does work
for the program.

The threads that are part of the operating environment are �manager threads�.
Things would be nice and easy if this was all there was to it. Unfortunately,
all threads aren�t created equal and all threads don�t execute equally. In
most cases, a program creates manager-like threads. In the following figure,
the threads that are lying down in their own room are user-created manager
threads.

As these user-created manager threads are designed to perform a service for
other threads in the program, they can be called �service threads�.

The reason you need to know which of your user threads are actually service
threads is that these kinds of threads perform different kinds of activities
than your other user threads. Because their activities are so different, they
are usually developed separately and aren�t involved with the fundamental
problems being solved by the program. For example, a service thread that
dispatches messages sent from other threads may have bugs, but the bugs
are of a different kind and the problems they have can most often been

FIGURE 8: Threads and Daemons
Version 5.0 Command Line Interface Guide 21

2
Processes and Threads

More On Threads
dealt with separately than bugs that would occur in non-service user
threads.

In contrast, your user threads are the agents performing your program�s
work and the interactions between them are where the action is. Being able
to distinguish between the two kinds of threads means that you can focus
on the threads and processes that are actively participating, rather than
those sitting back, performing more subordinate activities.

Subdividing User Threads

Sometimes, TotalView gets lucky and it can identify which threads are per-
forming service activities. In other cases, its not so lucky. While some
threads can be identified (and on some architectures this may not be possi-
ble), you are often forced to identify which user threads are performing ser-
vice activities.

FIGURE 9: User Threads, Service Threads, and Some Daemons
22 Command Line Interface Guide Version 5.0

Processes and Threads

Organizing Chaos
In the following diagram, one of the three non-manager worker threads is
event-driven.

So, while this figure shows five threads, most of our efforts are going to be
involved in debugging just two of them.

Organizing Chaos
While it is possible to attack the kinds of programs that are running thou-
sands or processes across hundreds of computers one-at-a-time, it is not
very practical. What TotalView does is organize these processes for you and
then let you reorganize this information. The technical term for the way
TotalView groups information is �group�. Here are quick definitions of the
four kinds of groups:

g Control Group: All the processes created by a program running on all
processors. If your program uses processes that it didn�t create, these
other processes are in another program group.

FIGURE 10: Two Kinds of User Threads and Service Threads
Version 5.0 Command Line Interface Guide 23

2
Processes and Threads

Organizing Chaos
g Share Group: All the processes within a control group that share the
same code. In most cases, your program will have more than one share
group. Share groups, like control groups, can have processes that exe-
cute on more than one processor.

g Workers Group: All the worker threads within a control group. These
threads can be drawn from more than one share group.

g Lockstep Group: All threads that are at the same PC. This group is a sub-
set of a workers group. Because all threads execute asynchronously, a
lockstep group only exists for stopped threads. All threads in the lock-
step group are also in a workers group.

In the list, the first two groups contain processes and last two groups con-
tain threads. And, notice that �same code� means that the processes have
the same executable file name.

TotalView�s commands let you manipulate processes individually and by
groups. In addition, you can create your own groups and manipulate a
group�s contents (to some extent).

NOTE Not all operating systems let you individually run a thread.

The following figure shows a processor running five processes (ignoring dae-
mons and other programs not related to your program) and the threads
within it. The figure indicates a control group and two share groups.

The elements in this figure are as follows:

Green (Gray in black and white) Area
A CPU. Everything represented by this drawing exists
within one processor.

White Rectangle
Processes being executed by the CPU.

Control Group The five processes make up the control group. This di-
agram doesn�t indicate which process is the main pro-
cedure.

Share Groups The control group has two share groups. The three
processes in the first share group have the same exe-
cutable. The two processes in the second share group
also share a second executable.
24 Command Line Interface Guide Version 5.0

Processes and Threads

Organizing Chaos
Figure 12 looks at how the threads in this drawing are organized. As you can
see, this figure adds the workers group and two lockstep groups. (You get
extra credit if you know how many other lockstep groups there are.)

NOTE The control group is not shown as it encompasses everything in this figure.

Here is a description of the added elements in this figure:

Workers Group All non-manager threads within the control group
make up the workers group. Notice that this group in-
cludes service threads.

Lockstep Group Each share group has its own lockstep groups. Graphi-
cally, two lockstep groups are indicated, one in each
share group.

If other threads are stopped, this picture indicates that
they are not participating in either of these two lock-

FIGURE 11: Five Processors and Processor Groups

Control Group

Share Group 2

Share Group 1
Version 5.0 Command Line Interface Guide 25

2
Processes and Threads

Organizing Chaos
step groups. Recall that a stopped thread is always in a
lockstep group. (Its OK if a lockstep group has only one
member.)

Service Threads Each process has one service thread. A process can
have any number of manager threads. This figure, how-
ever, only shows one.

Manager Threads
The only threads that are not participating in the work-
ers group are the ten manager threads.

Figure 13 extends the previous figure to show the same kinds of information
executing on two processors.

This figure differs from the one its based on in that it has ten processes on
two processors rather than five processes on one processor. However, the
number of control groups and share groups is unchanged. This is not to say

FIGURE 12: Five Processors and Processor Groups

Share Group 1

Workers Group

Lockstep Group 1

Lockstep Group 2

Share Group 2

Manager Threads

A Service Thread
26 Command Line Interface Guide Version 5.0

Processes and Threads

Creating Sets
that it couldn�t be different and that the processes on the second processor
could not be part of a second control group. It�s just in this example they
aren�t

Creating Sets
TotalView automatically creates and places items in groups as they are cre-
ated. The exception is the lockstep groups which are created or changed
whenever a program hits an action point. While there are many ways that
this kind of organization can be built up, the following steps indicate the be-
ginnings of how this might occur:

FIGURE 13: Five Processes and Their Groups on Two Computers
Version 5.0 Command Line Interface Guide 27

2
Processes and Threads

Creating Sets
1 TotalView and your program are launched and your program begins
executing within TotalView.

Control group: A group is created as the program is loaded.

Share group: A group is created as the program begins executing.

Workers group: The thread in the main routine is the workers group.

Lockstep group: There is no lockstep group.

2 The program forks a process.

Control group: A second process is added to the existing group.

Share group: A second process is added to the existing group.

Workers group: TotalView adds the thread in the second process to the
existing group.

Lockstep group: There is no lockstep group.

FIGURE 14: Step 1

FIGURE 15: Step 2
28 Command Line Interface Guide Version 5.0

Processes and Threads

Creating Sets
3 The second process is exec�d.

Control group: The group is unchanged.

Share group: A second share group is created having this exec�d process
as a member. This process is removed from the first share group.

Workers group: Both threads are in the worker�s group.

Lockstep group: There is no lockstep group.

4 The first process hits a break point.

Control group: The group is unchanged.

Share group: The groups are unchanged.

Workers group: The group is unchanged.

Lockstep group: A lockstep group is created whose member is the
thread of the current process. (Each thread is its own lockstep group.)

FIGURE 16: Step 3
Version 5.0 Command Line Interface Guide 29

2
Processes and Threads

Creating Sets
5 A second version of your program is started from the shell. You attach
to it within TotalView.

Control group: A third process is added.

Share group: This third process is added to the first share group.

Workers group: The thread in this third process is added to the group.

Lockstep group: There are no lockstep groups.

FIGURE 17: Step 5
30 Command Line Interface Guide Version 5.0

Processes and Threads

Creating Sets
6 Your program creates a process on another computer.

Control group: The control group is extended so that it contains this
fourth process that is running on the second computer.

Share group: The first share group is extended to contain this fourth
process that is running on the second computer.

Workers group: The thread within this fourth process is added to the
workers group.

Lockstep group: There is no lockstep group.

FIGURE 18: Step 6
Version 5.0 Command Line Interface Guide 31

2
Processes and Threads

Creating Sets
7 A process within program group 1 creates a thread. This adds a sec-
ond thread to one of the processes.

Control group: The group is unchanged.

Share group: The group is unchanged.

Workers group: A fourth thread is added to this group.

Lockstep group: There is no lockstep group.

FIGURE 19: Step 7
32 Command Line Interface Guide Version 5.0

Processes and Threads

Creating Sets
8 A breakpoint is set on a line within a process executing in the first
share group and the breakpoint is shared. The process executes until
all three processes are at the breakpoint.

Control group: The group is unchanged.

Share group: The groups are unchanged.

Workers group: The group is unchanged.

Lockstep group: A lockstep group is created whose members are the
four threads in the first share group. Because the thread in the second
share group is still running, this control group only contains one lockstep
group.

FIGURE 20: Step 8
Version 5.0 Command Line Interface Guide 33

2
Processes and Threads

More on Threads
9 You tell TotalView to step the lockstep group.

Control group: The group is unchanged.

Share group: The groups are unchanged.

Workers group: The group is unchanged.

Lockstep group: The group is unchanged.

Clearly, this example could keep on going until a much more complicated
system of processes and threads was created. However, it should give you
an idea of what is occurring.

More on Threads
It�s time to say something pretty simple: the reason you are using a debug-
ger is because your program isn�t operating correctly and the way you think
you�re going to solve the problem (unless it is a &%$# operating system
problem, which, of course, it usually is) is by stopping your program�s
threads, examining the values assigned to variables, and stepping your pro-
gram so you can see what�s happening as it executes.

Unfortunately, your multiprocess, multithreaded program and the comput-
ers upon which it is executing have lots of things executing that you want

FIGURE 21: Step 9
34 Command Line Interface Guide Version 5.0

Processes and Threads

More on Threads
TotalView to ignore. For example, you don�t want to be examining manager
and service threads created by the operating system, your programming en-
vironment, and your program.

Also, most of us are incapable of understanding exactly how a program is
acting when perhaps thousands of processes are executing asynchronously.
Fortunately, there are only a few problems that require full asynchronous
behavior.

One of the first simplifications you can make is to change the number of
processes. For example, suppose you have a buggy MPI program running on
100 processors. Your first step might be to have it execute in a 4 processor
environment.

After you get the program running under TotalView�s control, you will want
to run the process being debugged to an action point, then stop it there so
you can inspect the program�s state at that place. In many cases, because
your program has places where processes are forced to wait for an interac-
tion with other processes, you can ignore what they are doing. That is, in
most cases, you can let some processes keep on running because you don�t
care what they are doing (or perhaps you�re sure that they are running cor-
rectly because you�ve already debugged them).

NOTE TotalView lets you control as many groups, processes, or threads as you need
to control. While each can be controlled individually, you will probably have problems
remembering what you�re doing if you�re controlling large numbers of these things.
The reason that TotalView creates and manages groups is so that you can focus on
portions of your program.

In most cases, you do not need to interact with everything that is executing.
Instead, you want to focus on one process and the data that this process is
manipulating. Where things get complicated is that the process being inves-
tigated is using data created by other processes, and these processes may
have dependencies on other processes.

All this means that there is a rather typical pattern to the way you use
TotalView to locate problems.
Version 5.0 Command Line Interface Guide 35

2
Processes and Threads

More on Threads
1 At some point, you�ll want to make sure that you are interacting with
the threads and processes you want to interact with. (You can do this
using the CLI�s dgroupremove command.)

2 You place an action point within a process or thread and begin inves-
tigating the problem. In many cases, you�ll be setting an action point
at a place where you hope the program is still executing correctly. At
this time, you�ll probably be wanting all processes and threads to
operate synchronously. That is, you�ll be creating process and thread
barrier action points. You�ll then start your program.

3 When execution stops at an action point, you�ll look at the contents
of your variables. At this time, you�ll verify that your program state is
actually correct.

4 If your program is correct, you�ll begin stepping your program through
its code. You�ll probably want some sort of synchronous stepping or
you�ll want to set barriers so that everything isn�t running freely.

5 Here�s where things begin to get complicated. You�ve been focusing
on one process or thread. If another process or thread is modifying
the data and you become convinced that this is the problem, you�ll
want to go off to it and see what is going on.

The trick here, and it really isn�t much of a trick, is to keep your focus narrow,
investigating a limited number of behaviors. This is where debugging
becomes an art. A multiprocess, multithreaded program can be doing a
great number of things. Understanding where to look when problems occur
is the �art�.

If, for example, you are using the CLI to debug your program, you�ll probably
want to execute commands at the default focus. If you become convinced
that the problem is in another process, you�ll change to that process, also
executing CLI commands in that process at their default focus.

In contrast, while you will often want to do something using another focus,
what you will probably do is:

g Modify the focus so that it affects just the next command. For example,
here�s the command that steps thread seven in process three:

dfocus t3.7 dstep
36 Command Line Interface Guide Version 5.0

Processes and Threads

Setting Process and Thread Focus
(In this example, the dfocus directive tells TotalView to limit the scope of
what it does for the command that immediately follows and then, after
the command completes, to restore the old focus.)

g Use the dfocus command to change focus temporarily, execute a few
commands, then return to the original focus.

Setting Process and Thread Focus
When the CLI executes a command, TotalView has to decide which pro-
cesses and threads it should act upon. Most commands have a default set
of threads and processes and, in most cases, you won�t want to make
changes to it. Unfortunately, there are times when you�ll need to change
what the CLI is looking at. This section begins a rather intensive look at how
you tell TotalView what processes and threads it should use as the target of
a command.

Process/Thread (P/T) Sets

All CLI commands operate upon a set a processes and threads. This set is
called a P/T (Process/Thread) set. A P/T set is a Tcl list containing one or more
P/T identifiers. (The next section explains what a P/T identifier is.) Tcl lets you
create lists in two ways:

g You can enter these identifiers within braces ({ }).

g You can use Tcl commands that create and manipulate lists.

These lists are then used as arguments to a CLI command. If you are enter-
ing one element, you usually do not have to use Tcl�s list syntax.

For example, the following list contains specifiers for process 2, thread 1
and process 3, thread 2:

{ p2.1 p3.2 }

Unlike a serial debugger where each command clearly applies to the only
executing thread, the CLI can control and monitor many threads and many
different locations. The P/T set indicates the groups, process, and threads
that are the target of the CLI command. No limitation exists on the number
of groups, processes, and threads within a set.
Version 5.0 Command Line Interface Guide 37

2
Processes and Threads

Setting Process and Thread Focus
In you do not explicitly specify a P/T set, the CLI defines a target set for you.
This set is displayed as the (default) CLI prompt. (For information on this
prompt, see �Command and Prompt Formats� on page 79.)

You can change the focus upon which a command acts using the e dfocus
command. If the CLI executes a dfocus as a separate command, it changes
the default P/T set. For example, if the default focus is process 1, the follow-
ing command changes the default focus to process 2:

dfocus p2

If, however, dfocus is part of another command, it just changes the target
for just the command that follows. After the command executes, the old
default is restored.

The following example contrasts the two ways that you can use dfocus com-
mand. Assume that the current focus is process 1, thread 1. The following
commands change the default focus to group 2 and then steps the threads
in this group twice:

dfocus g2
dstep
dstep

Before the dstep command executes, it looks for the thread of interest in
group 2. TotalView will then step all threads in the same group as the thread
of interest.

In contrast, the following commands steps group 2, then steps process 1,
thread 1:

dfocus g2 dstep
dstep

Some commands can only operate at the process level�that is, you cannot
apply them to a single thread (or group of threads) in the process, but must
apply them to all or to none.

Arenas

A P/T identifier often indicates a number of groups, processes, and threads.
For example, assume that two threads executing the same program in pro-
38 Command Line Interface Guide Version 5.0

Processes and Threads

Setting Process and Thread Focus
cess 2 are stopped at the same statement. This means that the two stopped
threads form a lockstep group. If the default focus is process 2, stepping
this process actually steps both of these threads.

The CLI uses the term arena to define the processes and threads that are the
target of an action. In this case, the arena has two threads as you use the
lockstep group as an argument within a dfocus command. Many CLI com-
mands can act upon one or more arenas. For example, here is a command
with two arenas:

dfocus p1 p2

The two arenas are process 1 and process 2.

Specifying Processes and Threads

A previous section said that a P/T set is a list. This ignored what the individ-
ual elements of the list are. A better definition is that a P/T set is a list of
arena specifiers where an arena is the processes, threads, and groups that
are affected by a CLI debugging command. Each arena specifier describes a
single arena in which a command will act; the list is just a collection of are-
nas. Most commands iterate over the list, acting individually on an arena.
Some output commands, however, may combine the arenas and act on
them as a single target.

An arena specifier includes a width specifier and a thread of interest. (�Width
specifiers� are discussed later in this section.)

Within the P/T set, the thread of interest specifies a target thread, while the
width specifies how many threads surrounding the thread of interest are af-
fected.

The thread of interest is specified as p.t where p is the TotalView process ID
(PID) and t is the TotalView thread ID (TID).

The p.t combination identifies the process and thread of interest. The
thread of interest is the primary thread that is affected by a command. For
example, the dstep command always steps the thread of interest, but it may
optionally run the rest of the threads in the process of interest and may step
other processes in the group.
Version 5.0 Command Line Interface Guide 39

2
Processes and Threads

Setting Process and Thread Focus
The CLI has two symbols with special meaning when specifying P/T sets:

> The less-than symbol (<) character in place of the TID
to indicate the lowest number worker thread in the process.
If, however, the arena explicitly names a thread group,
< means the lowest numbered member of the thread
group. This symbol lets TotalView select the first user
thread, which may not be thread 1; for example, the
first and only user thread may be thread number 3 on
Compaq systems.

. A period indicates the current set. While this is seldom
needed interactively, it can be useful in scripts.

Process and Thread Widths
You can enter P/T set in two ways. If you are not manipulating groups, the
format is:

[width_letter][PID][.thread_indicator]

NOTE The next section extends this format to include groups.

For example, p2.3 indicates process 2, thread 3. This width representation
may look peculiar as it indicates that you do not have to specify anything.
Because the CLI has an extensive set of defaults, it will try to fill in pieces
that you omit. The only requirement here is that when you use more than
one element, you use it in the order shown in this representation.

The width_letter indicates which processes and threads are part of this arena
specifier. These letters are:

t Thread width

A command�s target is the indicated thread.

p Process width

A command�s target is the process containing the thread of inter-
est.

g Group width

A command�s target is the process containing the thread of inter-
est contained within the group.
40 Command Line Interface Guide Version 5.0

Processes and Threads

Setting Process and Thread Focus
a All processes

A command�s target is all threads in the group of interest that are
in the process of interest.

d Default width

A command�s target depends on the default for each command.
This is also the width to which the default focus is set. For exam-
ple, the dstep command defaults to process width (run the pro-
cess while stepping one thread), and the dwhere command
defaults to thread width (backtrace just one thread). Default
width�s are listed in �CLI Command Focus� on page 265.

These widths must be entered as lowercase letters.

The following figure illustrates the relationship of these specifiers:

NOTE Notice that the �g� specifier indicates control and share groups.

You can visualize this relationship a triangle with its base on the top to indi-
cate that the arena focusses on a greater number of entities as you move
from thread level at the bottom to �all� level at the top.

CLI commands differ in what the target of their action can be:

g Some commands operate only (or primarily) on the thread of interest or
process of interest.

FIGURE 22: Width Specifiers

All

Program Group

Share Group

Process

Thread

a

g

p

g

t

Version 5.0 Command Line Interface Guide 41

2
Processes and Threads

Setting Process and Thread Focus
g Other commands may extract the group from the arena and operate on
that group.

g Some commands operate on all of an arena�s processes and threads. An
example is dstatus. (The dstatus command shows the status of pro-
cesses and threads.) Command like dstatus use the width indicator to
create a slice through the arena�s processes and threads, and then oper-
ate on this slice.

As mentioned previously, the thread of interest specifies a particular target
thread, while the width specifies how many threads surrounding the thread
of interest are affected. For example, the dstep command always requires a
thread of interest, but entering this command can:

g Step just the thread of interest during the step operation (single-thread
single-step).

g Step all threads in the process containing the thread of interest (process-
level single-step).

g Step all processes in the group that have threads at the same PC (pro-
gram counter) as the thread of interest (group-level single-step).

This list doesn�t include what happens to other threads related to the
thread of interest. For more information, see �Bounded Stepping Com-
mands� on page 57.

To save a P/T set definition for later use, assign the specifiers to a Tcl vari-
able. For example:

set myset { g2.3 t3.1 }
dfocus $myset dgo

The thread of interest can also be modified by a width specifier. As the dfo-
cus command returns its focus set, you can save this value for later use. For
example:

set save_set dfocus

Examples

Here are some examples:

d1.< Use the default set for each command, focusing on the first user
thread in process 1. The < sets the TID to be the first user thread.

g2.3 Select process 2, thread 3 and set the width to group.
42 Command Line Interface Guide Version 5.0

Processes and Threads

Setting Group Focus
t1.7 Commands act only on thread 7 of process 1.

You can leave out parts of the P/T set if what you enter is unambiguous. A
missing width or PID is filled in from the current focus. A missing TID is
always assumed to be <. For more information, see �Incomplete Arena
Specifiers� on page 53.

Setting Group Focus
When you start a multiprocess program, the CLI adds each process to a pro-
cess group as the process starts. The debugger groups the processes
depending on the type of system call (fork() or execve()) that created or
changed the processes. There are two different types of process groups:

g Control Group

Contains the parent process and all related processes. A control group
includes children that were forked (processes that share the same source
code as the parent) and children that were forked but which subsequently
called execve(). That is, the children of the created processes that do not
share the same source code as the parent.

Assigning a new value to the CGROUP() variable for a process changes
the program group for that process. In addition, the dgroupadd com-
mand lets you add members to a group.

g Share Group

Contains the related processes that share the same source code.

A share group contains all members of a control group that share the
same executable image. (Note, however, that dynamically loaded libraries
may vary between share groups member.)

TotalView automatically places processes in share groups based on their
program group and their executable image. You can't change a share
group�s members.

In addition, there are also two types of thread groups:

g Workers Group

Contains all worker threads from all processes in the control group. By
default, it contains all threads except the kernel-level manager threads
Version 5.0 Command Line Interface Guide 43

2
Processes and Threads

Setting Group Focus
that can be identified. You can use all group manipulation commands on
workers group. However, you cannot delete them.

g Lockstep Group

Contains every stopped thread in a share group that have the same PC.
There is one lockstep group for every thread.

The group ID�s value for a lockstep group differs from the ID of other
groups. Rather than an automatically allocated integer ID, the lockstep
group ID has the form pid.tid, where pid.tid identifies the thread with
which it's associated. For example, the lockstep group for thread 2 in pro-
cess 1 is 1.2.

Process groups can only contain processes. Thread groups can only contain
threads, but threads in a thread group can be from more than one process.
While the two group types can usually be used interchangeably, some com-
mands can act differently depending on the kind of group is being manipu-
lated.

In general, if you are debugging a multiprocess program, the control group
and share group differ only when the program has children that are forked
with a call to execve().

Specifying Groups in P/T Sets

The arena specifier can also include a target group. If you do not include a
group specifier, the default is the control group. The CLI only displays a tar-
get group in the focus string if you set it to something other than the default
value.

NOTE Target group specifiers are most often used with the single step commands
as they give these command more control over what is being stepped.

Here is how you add a groups to the way you specify arenas.

[width_letter][group_indicator][PID][.thread_indicator]

This format adds the group_indicatorto the previously discussed syntax. There
are actually several different ways that you can indicate a group.

g You can name one of TotalView�s predefined sets. These sets are identi-
fied by letters. For example, the following command sets the focus to the
workers group.
44 Command Line Interface Guide Version 5.0

Processes and Threads

Setting Group Focus
dfocus W

g You can identify a group by its number. For example, here is how you set
the focus to group 3.
dfocus 3/

Notice the trailing slash. This slash lets the CLI know that you are speci-
fying a group number instead of a PID. For example, the following names
group 3 within process 3.

dfocus 3/3

g As you can also name sets, you must surround these set names with
slashes. For example, here is how you would name the interesting set of
threads within process 2:

dfocus p/interesting/2

The complete representation for the P/T set syntax may look peculiar
because it indicates that you do not have to use a specifier, which is correct.
If you do not use one, the CLI obtains the arena from the current P/T set
focus. On the other hand, you can use any combination of these entities.
The only rule is that the order for specifying these terms is as shown in the
syntax representation.

As you will see, you can use either a group_letter and a group_number or you
can use both of these options within one specifier. The group_number is a
value that TotalView assigns to the group.

The group_letter can be:

C Control group

All processes in the control group.

D Default program group

The default group ID, indicating all processes in the control
group. This differs from a C group specifier in that D clears the
group letter from the CLI prompt. This is the default group ID.

S Share group

The set of processes in the control group that have the same ex-
ecutable as the arena�s thread of interest.

W Workers group

The set of all worker threads in the control group.
Version 5.0 Command Line Interface Guide 45

2
Processes and Threads

Setting Group Focus
L Lockstep group

A set containing all threads in the share group that have the same
PC as the arena�s thread of interest. If these threads are stepped
as a group, they will proceed in lockstep.

You can only use uppercase letters for the group letter.

The slash character is optional if you are using a group_letter. However, you
must use it as a separator when entering a numeric group ID and a pid.tid
pair. For example, the following entry indicates workers group 3 in process 2:

pW3/2

The following table indicates what specifier combinations mean for the
CLI�s stepping commands:

TABLE 2: Specifier Combinations

Specifier Meaning
aC Specifies all process in all control groups.
aS Specifies all threads in all share groups.
aW Specifies all threads in all workers groups.
aL Specifies all threads in all lockstep groups.
gC Specifies all threads in the thread of interest�s control group.
gS Specifies all threads in the thread of interest�s share group.
gW Specifies all worker threads in the control group containing the

thread of interest.
gL Specifies all threads in the same share group within the pro-

cess containing the thread of interest that have the same
PC.

pC Specifies all thread�s in the control group of the process of
interest. This is the same as gC.

pS Specifies all threads in the process that participate in the same
share group as the thread of interest.

pW Specifies all worker threads in the process process of interest.
pL Specifies all threads in the process of interest whose PC is the

same as the thread of interest.
46 Command Line Interface Guide Version 5.0

Processes and Threads

Setting Group Focus
**** The list of specifier combinations needs to be
validated!

NOTE On some systems, TotalView cannot distinguish manager threads from user
threads, some manager threads may be chosen by mistake. This means that you may
need to remove these manager threads from groups using the dgroupremove com-
mand.

Here are a few examples:

pW3 All worker threads in process 3.

pW3.< All worker threads in process 3. Notice that this is the
same as the previous focus specifier.

gW3 All worker threads in the control group containing pro-
cess 3. Notice the difference between this and pW3,
which restricts the focus to one of the processes in the
control group.

gL3.2 All threads in the same share group within process 3
that are executing at the same PC as thread 2 in pro-
cess 3.

/3 Specifies processes and threads in process 3. As the
arena width, process of interest, and thread of interest
are inherited from the existing P/T set, the exact mean-
ing of this specifier depends on the previous context.

p4/1 All processes and threads in process 1 that are in
group 4. Group 4 can either by a process or thread
group.

g3.2/3 The 3.2 group ID is a synonym for the lockstep group
for thread 3.2. This group includes all threads in pro-
cess 3�s share group that are executing at the same PC
as thread 2.

tC These four combinations, while syntactically correct, are mean-
ingless. The t specifier overrides the group specifier. So, for
example, tW and t both name the current thread.

tS
tW
tL

TABLE 2: Specifier Combinations

Specifier Meaning
Version 5.0 Command Line Interface Guide 47

2
Processes and Threads

Setting Group Focus
NOTE Specifying thread width with an explicit group ID probably doesn�t mean
much.

In the following examples, the dfocus command creates a temporary P/T set
(the second item in the list) upon which the CLI command (the last term) will
operate. The dstatus command lists information about processes and
threads.

dfocus g dstatus
Displays the status of all threads in the control group.

dfocus gW dstatus
Displays the status of all worker threads in the control group.

dfocus pW dstatus
Displays the status of all worker threads in the current focus pro-
cess. The width is process level and the target is the workers
group.

dfocus p dstatus
Displays the status of all worker threads in the current focus pro-
cess. The width here, as in the previous example, is process and
the (default) group is the control group; intersecting this width
and the default group creates a focus that is also the same as the
previous example.

The following example shows how the prompt changes as you change the
focus. Notice how the prompt changes when using the C and the D group
specifiers.

d1.<> f C
dC1.<
dC1.<> f D
d1.<
d1.<>

Setting Groups

This section presents a series of examples that set and create groups. Many
of the examples use CLI commands that have not yet been introduced. You
will probably need to refer to the command�s definition in Chapter 5 before
you can appreciate what is occurring.
48 Command Line Interface Guide Version 5.0

Processes and Threads

Setting Group Focus
Here are six methods by which you can indicate that thread 3 in process 2
is a worker thread.

dset WGROUP(2.3) $WGROUP(2)
Assigns the group ID of the thread group of worker
threads associated with process 2 to the WGROUP
variable. (Assigning a non-zero value to WGROUP indi-
cates that this is a worker group.)

dset WGROUP(2.3) 1
A simpler way of doing the same thing as the previous
example.

dfocus 2.3 dworker 1
Adds the groups in the indicated focus to a workers
group.

dgroupadd -g $WGROUP(2) 2.3
Adds process 2, thread 3 to the worker group associ-
ated with process 2.

dfocus t2.3W dgroupadd
A simpler way of doing the same thing as the previous
example.

dset GROUP($WGROUP(2)) \
[concat $GROUP($WGROUP(2)) 2.3]

An extreme example of using related elements to mark
a thread as being a worker thread.

dgroupadd -g AGroup -new 2.3
Creates a group named AGroup and assigns process 2,
thread 3 to it.

dset CGROUP(2) $CGROUP(1)
dgroupadd -g $CGROUP(1) 2
dfocus 1 dgroupadd 2

These three commands insert process 2 into the same
control group as process 1.

Here are some additional examples.

dfocus g1 dgroupadd -new thread
Creates a new thread group that contains all the
threads in all the processes in the control group asso-
ciated with process 1.
Version 5.0 Command Line Interface Guide 49

2
Processes and Threads

Setting Group Focus
set mygroup [dgroupadd -new thread $GROUP($SGROUP(2))]
dgroupremove -g $mygroup 2.3
dfocus g$mygroup/2 dgo

Defines a new group containing all the worker threads
in process 2�s share group except for thread 2.3 and
then continue that set of threads,. The first command
creates a new group containing all the threads from
the share group; the second removes thread 2.3; the
third runs the remaining threads.

An Extended Example

When specifying an arena, the CLI has two places for specifying groups,
each with a different purpose. Using g is required when you need to force
the group while the current default focus indicates something different, For
example, gL forces group width while Luses the width of the current focus.

The following example will clarify this difference. The first step is to set a
breakpoint in a multithreaded OMP code and run it to a breakpoint:

d1.<> dbreak 35
Loaded OpenMP support library libguidedb_3_8.so :

KAP/Pro Toolset 3.8
1
d1.<> dcont
Thread 1.1 has appeared
Created process 1/37258, named "tx_omp_guide_llnl1"
Thread 1.1 has exited
Thread 1.1 has appeared
Thread 1.2 has appeared
Thread 1.3 has appeared
Thread 1.1 hit breakpoint 1 at line 35 in ".breakpoint_here"

The default focus is d1.<, which means that the CLI is at its default width,
The process of interest (POI) is 1, and the thread of interest (TOI) is the low-
est numbered non-manager thread. Because the default width for the
dstatus (st) command is process, entering st tells the CLI to display the sta-
tus of each of the processes. Notice that typing dfocus p st produces the
same output:

d1.<> st
1: 37258Breakpoint[tx_omp_guide_llnl1]
50 Command Line Interface Guide Version 5.0

Processes and Threads

Setting Group Focus
1.1: 37258.1BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.2: 37258.2StoppedPC=0xffffffffffffffff
1.3: 37258.3StoppedPC=0xd042c944

d1.<> dfocus p st
1: 37258Breakpoint[tx_omp_guide_llnl1]

1.1: 37258.1BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.2: 37258.2StoppedPC=0xffffffffffffffff
1.3: 37258.3StoppedPC=0xd042c944

Here�s what is displayed when you ask for the status of the lockstep group.
The rest of this example will use the f abbreviation for dfocus.

d1.<> f L st
1: 37258Breakpoint[tx_omp_guide_llnl1]

1.1: 37258.1BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

This command tells the CLI to get the status of the threads in thread 1.1's
(the TOI) lockstep group. The f L command modifier narrows the set so that
the display only includes the threads in the process that are at the same PC
as the TOI.

NOTE By default, the dstatus command displays information at �process� width.
This means that you do not need to type �f pL st�.

The next command runs thread 1.3 to the same line as thread 1.1. This
immediately followed by a command that displays the status of all the
threads in the process:

d1.<> f t1.3 duntil 35
35@> write(*,*)"i= ",i,

"thread= ",omp_get_thread_num()
d1.<> f p st
1: 37258Breakpoint[tx_omp_guide_llnl1]

1.1: 37258.1BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.2: 37258.2StoppedPC=0xffffffffffffffff
1.3: 37258.3BreakpointPC=0x1000acd0,

[./tx_omp_llnl1.f#35]

As expected, the CLI has added a thread to the lockstep group:
Version 5.0 Command Line Interface Guide 51

2
Processes and Threads

Setting Group Focus
d1.<> f L st
1: 37258Breakpoint[tx_omp_guide_llnl1]

1.1: 37258.1BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

The next set of commands first narrows the width of the default focus to
thread width�notice that the prompt changes�then displays the contents
of the lockstep group.

d1.<> f t
t1.<> f L st
1: 37258Breakpoint[tx_omp_guide_llnl1]

1.1: 37258.1BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

This is the hard step. While the lockstep group has two threads, the current
focus has only thread 1, and, coincidentally, that thread is part of the lock-
step group. Consequently, the lockstep group in the current focus is just the
one thread.

If you ask for a wider width (p or g) with L, the CLI displays more threads
from the lockstep group.

t1.<> f pL st
1: 37258Breakpoint[tx_omp_guide_llnl1]

1.1: 37258.1BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

t1.<> f gL st
1: 37258Breakpoint[tx_omp_guide_llnl1]

1.1: 37258.1BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

t1.<>

Because this example only contains one process, the pL and gL modifiers
produce the same result when used with dstatus. If, however, the program
had additional processes in the group, you could only see them using a gL
modifier.
52 Command Line Interface Guide Version 5.0

Processes and Threads

Setting Group Focus
In this example, the focus indicated by the prompt�this focus is called the
outer focus�controls the display. Notice what happens when dfocus com-
mands are strung together:

t1.<> f d
d1.<
d1.<> f tL st
1: 37258Breakpoint[tx_omp_guide_llnl1]

1.1: 37258.1BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

d1.<> f tL f p st
1: 37258Breakpoint[tx_omp_guide_llnl1]

1.1: 37258.1BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

d1.<> f tL f p f D st
1: 37258Breakpoint[tx_omp_guide_llnl1]

1.1: 37258.1BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.2: 37258.2StoppedPC=0xffffffffffffffff
1.3: 37258.3BreakpointPC=0x1000acd0,

[./tx_omp_llnl1.f#35]
d1.<> f tL f p f D f L st
1: 37258Breakpoint[tx_omp_guide_llnl1]

1.1: 37258.1BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3BreakpointPC=0x1000acd0,
[./tx_omp_llnl1.f#35]

d1.<>

String multiple focuses together may not produce the most readable result,
this example illustrates how one dfocus command can modify what another
sees and will act upon. The ultimate result is an arena upon which a com-
mand will act. In these examples, the dfcous command is telling the dstatus
command what it should be displaying.

Incomplete Arena Specifiers

In general, you do not need to completely specify an arena. Missing compo-
nents are assigned default values or are filled in from the current focus. The
Version 5.0 Command Line Interface Guide 53

2
Processes and Threads

Setting Group Focus
only requirement is that the meaning of each part of the specifier cannot be
ambiguous. Here is how the CLI fills in missing pieces:

g If you do not use a width, the CLI uses the width from the current focus.

g If you do not use a PID, the CLI uses the PID from the current focus.

g If you set the focus to a list, there is no longer a default focus. This means
that you must explicitly name a width and a PID. You can, however, omit
the TID. (If you omit the TID, the CLI defaults <.)

g You can type a PID without typing a TID. If you omit the TID, the CLI uses
its default of �<� where �<� indicates the lowest numbered worker thread
in the process. If, however, the arena explicitly names a thread group, <
means the lowest numbered member of the thread group.

In most cases, the CLI does not use the TID from the current focus, since
the TID is a process-relative value.

g A dot typed before or after the number lets the CLI know if you are speci-
fying a process or a thread. For example, �1.� is clearly a PID, while �.7� is
clearly a TID.

If you type a number without typing a period, the CLI interprets the num-
ber as being a PID.

g If the width is t, you can omit the dot. For instance, t7 refers to thread 7.

g If you enter a width and do not specify a PID or TID, the CLI uses the PID
and TID from the current focus.

You can use a bare alphabetic group specifier. The CLI obtains the rest of
the arena specifier from the default focus.

g You can use a group ID or tag followed by a �/�. The CLI obtains the rest of
the arena specifier from the default focus.

Lists With Inconsistent Widths

The CLI lets you create lists containing more than one width specifier. While
this can be very useful, it can be confusing. Consider the following:

{ p2 t7 g3.4 }

This list being defined is quite explicit: all of process 2, thread 7, and all pro-
cesses in the same group as process 3, thread 4. However, how should the
CLI use this set of processes, groups, and threads?
54 Command Line Interface Guide Version 5.0

Processes and Threads

Stepping
In most cases, the CLLI does what you would expect it to do: a command it-
erates over the list and act on each arena. If the CLI cannot interpret an in-
consistent focus, it prints an error message.

There are commands that act differently. These commands use each arena�s
width to determine the number of threads on which it will act. This is exactly
what the dgo command will do. In contrast, the dwhere command creates a
call graph for process-level arenas, and the dstep command runs all threads
in the arena while stepping the thread of interest. It may wait for threads in
multiple processes for group-level arenas.

Stepping
The action that the CLI will perform when stepping assembler instructions
or source statements depends if you have specified thread, process, or
group width.

NOTE If you do not explicitly name a group, the CLI steps the control group.

Here is what happens at each width:

g Thread

TotalView steps the thread of interest. Stepping a thread is not the same
as stepping a thread�s process because a process can have more than
one thread.

NOTE Thread stepping is not implemented on Sun platforms. On SGI plat-
forms, thread stepping is not available with pthread programs. If, however,
your program�s parallelism is based on SGI�s sprocs, thread stepping will be
available.

Thread width (t) tells the CLI that it should just run that thread. In con-
trast, process width (p) tells the CLI that it should run all threads in the
process that are allowed to run while the thread of interest is stepped.

TotalView also allows all manager threads to run.

g Process (default)

TotalView runs all threads in the process, and execution continues until
the thread of interest arrives at its goal location, which can be the next
Version 5.0 Command Line Interface Guide 55

2
Processes and Threads

Stepping
statement, the next instruction, and so forth. Only when the thread of
interest reaches the goal are the other threads in the process stopped.

g Group
The CLI examines the group and identifies each process having a thread
stopped at the same location as the thread of interest (a �matching� pro-
cess). The CLI waits until the thread of interest and one thread from each
matching process arrive at the action point.

If you use a process group specifier (C, D, S, W, or L), the CLI examines the
group to identify those processes having a thread stopped at the same
location as the thread of interest (a �matching� process). After selecting
one matching thread from each matching process, it runs all processes in
the group, and waits until the thread of interest and each selected thread
arrive at the goal location.

If you use a thread group specifier, TotalView runs all threads in the group
to the same goal as the thread of interest. (If a thread that is not in this
group arrives at the goal, TotalView will also stop it.) The group of interest
specifies the set of threads that the CLI will wait for�the command does
not complete until all threads in the group of interest are at the goal.

When you step a control group, only the process of interest runs. In con-
trast, stepping a thread group runs all processes in the control group.

NOTE The workers group includes all workers in the control group, not just
the worker threads from a single process.

Regardless of which threads are in the group of interest, the CLI will only
wait for threads that are in the same share group as the thread of interest.

If a thread hits an action point other than the goal breakpoint during a step
operation, the step ends.

The duntil command differs from other step commands when it�s applied to
a group. (The duntil command tells TotalView to execute program state-
ments until a selected statement is reached.) This command runs the entire
group and the CLI waits until all processes in the group have at least one
thread arrives at the goal breakpoint. This lets you sync up all the processes
in a group in preparation for group-stepping them. If you use duntil with a
thread group, TotalView runs the process (for p width) or the control group
(for g width) and waits until all the running threads in the group of interest
arrive at the goal.
56 Command Line Interface Guide Version 5.0

Processes and Threads

Bounded Stepping Commands
In all cases, if the focus process does not exist before a command executes,
TotalView creates the process and then executes the command.

Bounded Stepping Commands
The bounded stepping commands are dstep, dstepi, dnext, dnexti, dout,
and duntil. (They are bounded because they run to a fixed goal.) They all run
one or more threads to a goal. They all execute synchronously�the CLI is
blocked while each runs.

Stepping When No Target Group is Specified

Here are some of the operations that can occur when using bounded step-
ping commands:

**** Please validate examples.

g Run a single thread to a goal
While the thread runs, no other thread runs (except kernel manager
threads). Optionally, the CLI may run all non-worker threads.

Example: dfocus t dstep

g Run a single thread to a goal while the process runs

A single thread runs into or through a critical region.

Example: dfocus p dstep

g Run one thread in each process in a share group to a goal
While one thread in each process in a share group runs to a goal, the rest
of the threads run freely.

Example: dfocus gS dstep

g Run all worker threads in the process to a goal while non-worker
threads run

Runs symmetric worker threads through a parallel region in lockstep.

Example: dfocus gW dstep

g Run all workers in the share group to a goal
All processes in the share group participate. The non-worker threads run.

Example: dfocus gS dstep
Version 5.0 Command Line Interface Guide 57

2
Processes and Threads

Bounded Stepping Commands
g Run all threads that are at the same PC as the thread of interest to
a goal
The CLI selects threads from one process or from the entire share group.
This is very much like the previous two bullets, but the CLI uses the set of
threads which are in lockstep with the thread of interest rather than using
the workers group.

Example: dfocus L dstep

Here is how the bounded step commands behave when operating at pro-
cess and group widths:

g Process Group Operation: Examine the thread of interest to determine
the goal, and then run the entire control group until the focus thread and
one thread from each process in the focus group arrives at the goal.

g Group-Width Thread Group Operation: Run the entire control group.
The CLI commands wait for the threads in the focus group to reach the
goal. After all focus group threads arrive, TotalView stops the control
group again (and the original run state is restored).

g Process-Width Thread Group Operation: Run the entire process. CLI
commands wait for just the threads in the focus group to reach the goal.

The duntil command behaves differently. For more information, see �duntil�
on page 216.

Stepping With an Explicit Group and Arena Width Tag

The arena width specifiers (a, g, p, and t) name the set of processes and
threads that will run. The group specifiers (C, S, W, L, or a numeric group ID)
name the set of threads that will be run to the goal. (As usual, the duntil
command behaves differently.)

When you use a control group or another process group, the thread of inter-
est is run to a goal along with one thread from each participating processes.
Other threads in the control group run freely.

NOTE In general, trying to run all the threads in a process to a goal doesn�t work

When you use a thread group (W, L, or an explicit thread group ID), TotalView
determines which threads are run to the goal by intersecting the specified
58 Command Line Interface Guide Version 5.0

Processes and Threads

Bounded Stepping Commands
group and the arena width. All other threads in the control group run freely
during the operation.

TotalView defines the set of threads that are run to the goal from the thread
of interest�s share group.

The default focus uses the full control group (C). This means that one thread
runs to a goal and the others run freely.

g Group-Width Arena with a Control Group (C): The CLI searches the
share group for threads that match the PC of the thread of interest.
TotalView runs one matching thread from each share group member to
the goal along with the thread of interest. All other threads in the control
group run freely.

g Process-Width Arena with a Workers Group (W): TotalView runs all
worker threads in the process to the same goal. Non-worker threads in
the process also run. This lets you step the workers together through a
parallel region in Single Instruction, Multiple Data (SIMD)-style parallel
programs. Uniform system-style programs�that is, programs having a
varying set of threads that operate on similar but not necessarily identical
tasks�are not handled as easily by this mode.

g Group-Width Arena with a Workers Group (W): TotalView runs all
worker threads in the share group to the goal; all other threads in the pro-
gram group also run. This lets you step all workers across a multiprocess
multithreaded program through a parallel region together.

g Process-Width Arena with the Lockstep Group (L or GID = pid.tid):
TotalView runs all threads having the same PC as the thread of interest to
the goal; other threads in the process run freely. The threads are lined up at
the start of a parallel region. This allows you to step them through the re-
gion in lockstep without having to worry about which are in the workers
group.

g Group-Width Arena with the Lockstep Group: TotalView runs all
threads having the same PC in the share group to the goal; other threads
in the control group run freely. This lets you run all threads executing the
same code in a multiprocess, multithread program through a parallel re-
gion together without having to worry about which ones are in the work-
ers group.
Version 5.0 Command Line Interface Guide 59

2
Processes and Threads

�Piling Up� versus �Running Through�
Some Examples

In the following examples, the default focus is set to d1.<.

dstep Steps the thread of interest while running all other
threads in the process.

dfocus W dnext Runs the thread of interest and all other worker
threads in the process to the next statement. Other
threads in the process run freely.

dfocus W duntil 37
Runs all worker threads in the process to line 37.

dfocus L dnext Runs the thread of interest and all other stopped
threads at the same PC to the next statement. Other
threads in the process run freely. Threads that encoun-
ter a temporary breakpoint in the course of hopping to
the next statement usually join the lockstep group.

dfocus gW duntil 37
Runs all worker threads in the share group to line 37.
Other threads in the program group run freely.

UNW 37 Performs the same action as the previous command:
runs all worker threads in the share group to line 37.
This example uses the predefined UNW alias instead of
the individual commands. That is, UNW is an alias for
dfocus gW duntil.

SL Finds all threads in the share group that are at the
same PC as the thread of interest and step them all
one statement. This command is the built-in alias for
dfocus gL dstep.

sl Finds all threads in the current process that are at the
same PC as the thread of interest, and step them all
one statement. This command is the built-in alias for
dfocus L dstep.

�Piling Up� versus �Running Through�
When you enter a step command with its focus set to the lockstep group,
the CLI runs all threads at the same PC as the thread of interest to the same
60 Command Line Interface Guide Version 5.0

Processes and Threads

P/T Set Expressions
goal. In contrast, when you enter a step command with its focus set to a
non-lockstep thread group, the CLI runs all threads in the indicated group to
the same goal as the thread of interest. The set of threads being run to the
goal is called the active set. In all cases, the goal is selected based on the PC of
the thread of interest. The step command then waits for all threads in the
active set to get to that goal.

While the active set is running to the goal, all other threads in the process
(or group) run freely. This includes all non-worker threads, and it may include
some worker threads if the active set does not include all workers.

If a thread that is not in the active set reaches the goal breakpoint, the CLI
continues the process again until all active threads reach the goal. Before
continuing the process, the CLI can either step the thread over the goal
breakpoint or it can hold it.

If a single thread is being run into a critical region, threads that are not in the
active set run freely. Otherwise, the thread of interest may not be able to
make any progress.

If a lockstep group is running, threads that are not in the active set pile up at
the goal when the CLI steps the lockstep group. The CLI does not step them
over the goal breakpoint if you had specified a thread group.

�Piling up� can only occur for system upon which the CLI can control asyn-
chronous threads.

P/T Set Expressions
At times, you don�t want all of one kind of group or process to be displayed.
The CLI lets you use the following three operators to manage your P/T sets:

| Creates a union; that is, all members of the sets.

- Creates a difference; that is, all members of the first set that are not
also members of a second set.

& Creates an intersection; that is, all members of the first set that are
also members of the second set

For example, here is how you would create a union of two P/T sets:
Version 5.0 Command Line Interface Guide 61

2
Processes and Threads

P/T Set Expressions
dfocus p3 | L2

As the definitions imply, these operators only work on two sets. However,
you can apply these operations repeatedly. For example:

dfocus p2 | p3 & L2

This statement creates a union between p2 and p3, then creates an inter-
section between this result and L2.

The CLI associates sets from left to right. You can change this order using
parentheses. For example:

dfocus p2 | (p3 & pL2)

Typically, these three operators are used with the following P/T set functions:

breakpoint Returns a list of all threads that are stopped at a break-
point.

error Returns a list of all threads stopped due to an error.

existent Returns a list of all threads.

held Returns a list of all threads that are held.

nonexistent ?????

**** What does nonexistent mean?

running Returns a list of all running threads.

stopped Returns a list of all stopped threads.

unheld Returns a list of all threads that are not held.

watchpoint Returns a list of all threads that are stopped at a
watchpoint.

The following examples should clarify how these operators and functions
are used:

f {breakpoint(a) | watchpoint(a)} dstatus
Show all threads that stopped at breakpoints and
watchpoints.

f { stopped(a) - breakpoint(a) } dstatus
Show all stopped threads that are not stopped at
breakpoints
62 Command Line Interface Guide Version 5.0

Processes and Threads

P/T Set Expressions
f { g.3 - p6 } duntil 577
Run threads three along with all other processes in the
group to line 577. However, do not run anything in pro-
cess 6.

f { ($PTSET) & p123)
Use just process 123 within the current P/T set.
Version 5.0 Command Line Interface Guide 63

2
Processes and Threads

P/T Set Expressions
64 Command Line Interface Guide Version 5.0

	Processes and Threads
	A Couple of Processes
	A Couple of Threads
	Even More Complicated Programming Models
	More On Threads
	Subdividing User Threads

	Organizing Chaos
	Creating Sets
	More on Threads
	Setting Process and Thread Focus
	Process/Thread (P/T) Sets
	Arenas
	Specifying Processes and Threads
	Examples

	Setting Group Focus
	Specifying Groups in P/T Sets
	Setting Groups
	An Extended Example
	Incomplete Arena Specifiers
	Lists With Inconsistent Widths

	Stepping
	Bounded Stepping Commands
	Stepping When No Target Group is Specified
	Stepping With an Explicit Group and Arena Width Tag
	Some Examples

	“Piling Up” versus “Running Through”
	P/T Set Expressions

